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IDEAL 9TH-ORDER MULTIGRADES 
AND LETAC'S ELLIPTIC CURVE 

C. J. SMYTH 

ABSTRACT. By showing that the elliptic curve (x2 _ 13)(y2 _ 13) = 48 has 
infinitely many rational points, we prove that Letac's construction produces 
infinitely many genuinely different ideal 9th-order multigrades. We give one 
(not very small) new example, and, by finding the Mordell-Weil group of the 
curve, show how to find all examples obtainable by Letac's method. 

1. INTRODUCTION 

Letac gave an ingenious construction for 'ideal 9th-order multigrades,' thal 
is, for solutions {{nI , .I . , n1o}, {m1 , ... ., m10}} in integers of the system o0 
equations 

10 10 

(1) ,~~~~~nJ = m (j=1 9) 
i=1 i=1 

with {n,, ... , no} {m1, , M10}. His method is described in Gloden [4. 
pp. 54-55] (see also ?2). Every solution set {{n1, , m10}} gives infinitely 
many other sets by affine transformation: {{an + b,.. , amo + b}} is also a 
solution set. We regard two solution sets as genuinely different only if they are 
not related in this way. That an affine transformation of a solution set is again 
a solution set is immediately apparent from an alternative formulation of (1), 
namely that 

10 10 

(1') j(T-ni) - j(T-mi) = C #O 
i=l i=1 

where C is independent of T. 
The purpose of this note is to show that Letac's method gives infinitely many 

genuinely different solutions. In fact, Gloden [4, p. 55] implied that the method 
produced infinitely many solutions of (1). As E. M. Wright [8] points out, how- 
ever, it is not clear whether or not he meant infinitely many genuinely different 
solutions. Indeed, Wright remarks that no solution set genuinely different from 
Letac's example ((6), below) seems to have appeared in the literature. In ?3 we 
give such an example. 
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In ?5, we compute the Mordell-Weil group of Letac's elliptic curve ((3), be- 
low) associated with Letac's method. As a result; we can in principle compute 
all multigrades (1) obtainable by Letac's method. 

2. LETAC'S METHOD 

Letac's method depends on obtaining integer solutions (n, p, q, m) to the 
equation ((y') of [4, p. 55]) 

(2) m 2(1089p2 - 1053n 2) q2(13p2 - 9n 2). 
We paraphrase his method by writing u = 3n/p and v = q/3m, so that (2) 
becomes 

(3) (u2 - 13)(v2 -13) = 48. 

Then for each rational solution (u, v) of (3), the multigrade system (1) has a 
rational solution set 

{{+4(u+v), +(uv+u+v- 11), +(uv-u-v- 11), 

4(uv + 3u - 3v + 1 1), +(uv - 3u - 3v + 1 1)}, 
{?4(u-v), 4t(-uv+u-v- 11), +(-uv-u+v- 11), 

+ (-uv + 3u + 3v + 11), I(-uv - 3u - 3v + 1 1)}}. 
Equivalently, putting 

f(TUv)=(T -(4(u+v))2)(T -(uv+u+v-11)2) 

(T _ (uv -u -v _ 11)2) ) (T _ (uv + 3u - 3v + 11)2) 

* (T2 _ (uv - 3u + 3v + 11)2), 

then, using (1'), f(T, u, v) - f(T, u, -v) is independent of T. To show 
that the sets of m 's and n 's are not the same, it is therefore enough to show 
that f(O, u, v) $A f(O, u, -v). This is readily shown, with the help of (3), to 
be equivalent to showing that 

(5) uv(u2 -_v2)(u2 - 9v2)(9u -v2) 0. 

Since uv (u - v2) 
2 0 for rational solutions, and u2 = 9V2 implies that 

(u, v) = (+3, +1) or (+11, +11/3), we see that (5) holds, and so the sets 
{mi} and {ni} of (4) are distinct unless (u, v) is one of these eight pairs, or 
the eight pairs with the values u and v interchanged. 

The solution (n, p, q, m) = (51, 61, 573, 79), i.e., u = 16513, V = 17991 

obtained by Letac [4, p. 55] gives the multigrade (see also [9, 6]) 
(6) {{?12, ?11881, ?20231, ?20885, +23738}, 

{+436, +11857, +20449, +20667, +23750}}. 
We obtain this solution in a natural way in ?6. 

3. RATIONAL SOLUTIONS OF (U - 13)(v - 13) = 48 

Writing (3) protectively as 

(3') (U2 - 13W2)(V2 - 13W2) = 48W4 
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we check that its singularities consist of ordinary double points at (1, 0, 0) and 
(0, 1, 0). Thus, the genus formula 

= (d - 1)(d - 2) - 1 r(rj- 1 

[3, p. 199] for a plane curve of genus g, degree d, and only ordinary multiple 
points of multiplicity r , shows that g = 1. The curve, having a rational 
point, is therefore birationally equivalent to an elliptic curve in Weierstrass 
form. Indeed, using the standard technique described in [1, p. 212] or [7, p. 
40], we can put 

3u+v _ 13(79u - 191) 

(X - 1)(v - 3)' 37uv - 117u - 91v + 279 

Then the only pole of X on (3) is the double pole at (1, 3), while the only 
pole of Y on (3) is a triple pole at (1, 3). Further, 

Y2 =-6X-83X2+ 29X+7+?Y+21XY, 

and then the substitution 

(7) X = (327 - x)/216, Y = (21573 - y - 63x)/1296 

gives 

(8) y2 = X3 - 556011x + 159551910 

or 
2 

y = (x-435)(x-426)(x+861). 

(Equation (8) can also be derived from (3) by ad hoc methods, e.g., by first 
writing (3) as (u(v 2- 13))2 = (13v2- 121)(v2- 13), and then using well-known 
tricks.) 

Now under these transformations, (u, v) = (3, 1) maps to (X, Y) = 

(-2 -223), and so maps to (x, y) = (867, -18144) (= P say). We can 
then use the tangent to (8) at P to give us another point Q (= -2 . P under 
the group law) where it meets the curve again. In fact, 

(359265 21829905 
- V 784 ' 21952 ) 

This point Q on (8) corresponds on the original curve (3) to the point 

(-1264969 -296313 
(U, v) = t424999 ' 249661 / 

which, using (4), gives the multigrade system 

{n,, ... , n1o} = {+133225698289, +189880696822, +338027122801, 

+432967471212, +529393533005}, 

(9) {m1, ... , m10} = {+87647378809, +243086774390, +308520455907 , 

+441746154196, +527907819623}. 
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Since gcd(n1, n5) = 1 , this is not a multiple of Letac's multigrade. It appears 
to be new, and is probably the smallest multigrade, apart from (6), obtainable 
by Letac's method. 

Now, as Lutz and Nagell showed [5; 1, p. 264; 7, p. 221], every point of 
finite order on an elliptic curve y2 = x - Ax + B with A, B E Z has integer 
coordinates. Hence, Q has infinite order in the Mordell-Weil group on (8), and 
so (8) has infinitely many rational solutions. 

The rational map (u, v) | 4 (x, y) described above has a rational inverse, 
which can be described explicitly as follows: map (x, y) I, (X, Y) by (7), and 
then put 

c= 1027x+6XY- 11Y, d =-1027-3510X+ 156Y- 12XY, 
2 2 e = 2483(1 + X) + 279Y + 6XY, L = 9(X + 1) - 13X, 

M=9X 2-13(X+1)2, R=e+13c, 

V=X2d +2X(X+ 1)c, W=Le-Mc, 

U=Ld -8X(X+ 1)c, Z =X e-(X+ 1)2c. 

Then 
dUe - RWc - 48c 2Z 

-d2 U+cRU+cdW+48C2V 

and 
v 3 ((X+ 1)u- X . 

Hence, infinitely many rational solutions (x, y) of (8) give infinitely many 
rational solutions (u, v) of (3). 

4. AN INFINITY OF MULTIGRADES 

We now show that the infinity of rational solutions of (3) give an infinity of 
genuinely different solution sets for (1). First, note that any affine map ax + b 
connecting two multigrades given by (4) must have b = 0. This is clear, since 
these multigrades are symmetric about zero. 

For any solution (u, v) of (3), the left and right solution sets {nI, ..n , n10} 
and {ml, .. ., m10} given by (4) can each be placed in ascending order. In do- 
ing this, we are clearly choosing one of 10!2 possible pairs of orderings. Hence 
if we have more than 5 x 10!2 different solutions (u, v) of (3), at least five solu- 
tions (u(k), v(k)) of (3) will give five solution sets {{IIk), .n . , n0}, {m k), . ... 

n(k0)}} (k = 1, ..., 5) which are in the same order relative to the parametri- 
sation (4) of these sets. So, for some i and J, 

(10) 4(u(k) +v( ))= n(k), 4(u(k)_V(k) m(k) (k= 1, 5 

Confining our attention to these five solution sets, and supposing that no two 
of the five are genuinely different, we would have 

(11l) n(k) = a(k),(l) m(k) = a(k)M(l) (k = 1 5) 
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so that (10) with (1 1) would give 

u(k) =a(k)() V(k) = a(k) (v) (k = 1, ..., 5). 

But then 

((a (k)u(1)2 _) 3)((a (k)V(1) - 13) = 48 (k = 1, ..., 5), 

giving a quartic in a(k) with five different solutions. This being impossible, we 
have shown that any set of N solutions of (3) will give at least N/(5 x 1 0!2) 
genuinely different solution sets of (1). (Further, if none of these are the sixteen 
solutions (u, v) = (+ 1, +3), ... mentioned in ?2, these sets will also have 
{n1 , ... , n10} 7 {m1, * . , m10}.) Hence, we certainly obtain, from an infinite 
number of solutions of (3), an infinite number of genuinely different solution 
sets of (1). 

The constant 5 x 1 0!2 in the above argument was chosen to make the argu- 
ment simple, and is certainly not best possible. A more complicated argument, 
which will not be given here, shows that the best constant is in fact 16. For 
a given solution (u, v) of (3), the sixteen solutions (?u, +v), (+v, +u), 
( 1 /u, +11/v), (+ 1 1/v, + 1 1/u) all give the same multigrade. 

5. THE MORDELL-WEIL GROUP OF THE CURVE 

It is possible, by standard methods, to compute the Mordell-Weil group G 
of the curve (3), and hence compute all 9th-order ideal multigrades which can 
be produced by Letac's method. The result is that G - C2 x C4 x C.o, so that 
the curve has rank 1. In the original form (3), with ( 1, 3) as the zero element, 
generators for each cyclic component can be taken as (-11, - 1+), (3, -1), 
and (3, 1), respectively. The precise form of the group law on (3), without 
reference to (8), is described in ?6. For the curve in Weierstrass form (8), the 
corresponding generators are (426, 0), (543, -4212), and (867, -18144). 

We compute G using the form (8). We first find the torsion part Gtors of G. 
Since (426, 0) and (543, -4212) generate a group A C2 x C4, we need only 
check that there are no more than eight points of finite order. This follows from 
the fact that, since (8) has discriminant 2 2316 11213, (8) has good reduction at 
the prime 5. Hence [7, p. 176], there is an injection Gtors - G5, the group of 
(8) over GF(5). But G5 has eight elements also, so Gtors A C2xC4. 

To find the torsion-free part of G, we compute G/2G, following [7, pp. 
281-284]. The procedure is not guaranteed to work, but does so provided that 
for each of the finite number of "2-coverings" ((14), below) of the curve, one 
can either exhibit a rational point on the 2-covering, or show that it has no such 
point. The algorithm for a curve 

(12) y2 = (x - e,)(x - e2)(x- e3) 

with integral 2-division points (ei, 0) (i = 1, 2, 3) is as follows: Let S 
be the set consisting of -1 and the primes p dividing the discriminant 
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16(el - e2)2(e2 - e3)2(e3 - el)2 of (12), and Qs be the (multiplicative) sub- 
*2 group of Q* generated by S and Q* . Then the map p from the curve given 

by (12) to Qs/Q*2 x Qs/Q*2 defined by 

(13) (x, y) A ((x - ei)Q*2, (x - e2)Q)*2 

is an invective homomorphism (this property is used to define fo at 00, 
(e1, 0), and (e2, 0) where (13) is not applicable). Its image consists of points 

(di Q*2, d2Q*2) with d1, d2 E Qs for which the 2-covering 

d( 
2 

-dz2=e 

(14) { d1z1 - d2z2 e2 -e, (14) 'I~~~~ dz2 -did 2= l 1 - l2Z3 = 3 - 
Il 

of (8) has a rational point (zl, z25 z3). The pre-image (x, y) on (8) of 

(diQ*2, d2Q*2) under q is then (el + diz , dld2ZZ2Z3). 
Following [7], one can show that for the particular curve (8), Im 0 is gener- 

atedby (Q* , 3Q*2 ) = (867,-18144), (_11Q*2 _Q*2) = (327 -3564), 
and (13Q*2 , Q*2) = (439, -260). (These points correspond to the points 
(u, v) = (3, 1), H , 1I), and (1, -3), respectively, on the original curve 
(3).) Two of these generators are accounted for by the image of Gtors/2G, 

which is generated by (13Q*2 , 3Q*2 ) and (-11 x 13Q*2, -Q* ). Hence, G 
has a single generator of infinite order: G - C2 x C4 x C. . 

The proof that the above three points generate Im q is obtained by veri- 
fying first that, for (8), the 2-covering (14) has no solution with (d1, d2) = 

(-1, -1), (1, 2), or (-1, -2). One also checks that for (d 1Q*2, d2Q*2) e 
Im(, we have Sgn d = Sgn d2, 2 t d1, 3 t dl, 11 t d2, and 13 t d2. Each of 
these facts is verified by a local argument at the relevant prime. The result then 
follows. 

6. SOLUTIONS USING TANGENT CONICS 

Although solutions (u, v) of (3) can be found using the rational mapping 
(x, y) h-+ (u, v) described above, the procedure is somewhat cumbersome. The 
use of conics tangent to (3), however, provides a direct method of producing 
solutions of (3). This idea has recently been used by Elkies [2, p. 832]. 

The conic 

(15) AUV+BUW+CVW+DW2 = 0 

meets the projective conic (3') in eight points in the complex projective plane. 
Four of these intersections are at the two double points. If three of the remaining 
four points are rational, then the fourth will be also. In particular, if we take 
A=37,B=-117,C=-91,D=279 (i.e.,thedenominatorof Y in?3), 
then three intersection points are at (u, v) = (1, 3). The fourth intersection 
point is then (917i- 1653), providing one explanation of where Letac's solution 
of (3) comes from. 



IDEAL 9TH-ORDER MULTIGRADES 822 

If we now take another conic merely tangent at (1, 3) and passing through 
(1791 153) , we obtain a fourth point of intersection (-1214919293B3), which 79 6424999 ' 249661 
again gives the multigrade (9). 

It is natural to expect that these conics (15) are connected with the group law 
on (3). Indeed, if h(PI, P2, P3) = P4, where P1, P2, P3, P4 are nonsingular 
points of (3') lying on some conic (15), then group addition + is defined by 
P1 +P2 = h(0, 0, h(PI, P2, 0)). Here, 0 is the zero of the group, which we take 
as (1,3, 1). 
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Added in proof. John Leech has informed me that the curve considered in this 
paper is connected with the problem of finding two rational right-angled trian- 
gles on the same base whose heights are in the ratio k: 1. The curve of this 
problem, x - x-1 = k(y - yI), is elliptic for k # 0 +1 , and for k = 12 
has Weierstrass form (8). Leech showed that these curves have torsion group 
C2 x C4 and, for integers 1 < k < 40, have rank 0 or 1. 
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